Autor: |
Hrushikesh N. Mhaskar, Sergei V. Pereverzyev, Maria D. van der Walt |
Jazyk: |
angličtina |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Frontiers in Applied Mathematics and Statistics, Vol 3 (2017) |
Druh dokumentu: |
article |
ISSN: |
2297-4687 |
DOI: |
10.3389/fams.2017.00014 |
Popis: |
We consider the question of 30-min prediction of blood glucose levels measured by continuous glucose monitoring devices, using clinical data. While most studies of this nature deal with one patient at a time, we take a certain percentage of patients in the data set as training data, and test on the remainder of the patients; i.e., the machine need not re-calibrate on the new patients in the data set. We demonstrate how deep learning can outperform shallow networks in this example. One novelty is to demonstrate how a parsimonious deep representation can be constructed using domain knowledge. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|