Autor: |
Shuwang Yang, Gang Wang, Qiang Xu, Junfu He, Minghao Yang, Zhiyuan Zhang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 14, Iss 1, Pp 1-27 (2024) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-024-73223-z |
Popis: |
Abstract Modern buildings increasingly utilize lightweight, high-strength materials and feature high-rise, large-span structural designs. These structures often exhibit low natural frequencies and are susceptible to resonance from low-frequency dynamic loads such as wind and pedestrian loads. This paper focuses on a large-span double-connected structure and analyzes its dynamic response under the combined effects of wind and pedestrian loads. First, a finite element model of the structure was created using ANSYS, and model validity verification and modal analysis were performed. Second, a Fourier-based pedestrian model was used to simulate pedestrian loads and generate time-range data. The pulsating wind speed was generated from the Davenport spectrum using the harmonic superposition method. Wind load time-range data were calculated for different heights using Bernoulli’s theorem. Finally, the solution yields information about the dynamic response of the structure. The study revealed maximum vertical comfort ratings in the connecting corridor were achieved when crowd density did not exceed 0.3 persons/m2. The connecting corridor’s most unfavorable horizontal comfort level was evaluated as a medium, except for the 0-degree wind angle condition. This paper provides experience in studying the dynamic response and vibration suitability assessment of the large-span double-connected structure under wind and pedestrian loads. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|