Advances in Droplet-Based Microfluidic High-Throughput Screening of Engineered Strains and Enzymes Based on Ultraviolet, Visible, and Fluorescent Spectroscopy
Autor: | Shunyang Hu, Bangxu Wang, Qing Luo, Rumei Zeng, Jiamin Zhang, Jie Cheng |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Fermentation, Vol 10, Iss 1, p 33 (2023) |
Druh dokumentu: | article |
ISSN: | 10010033 2311-5637 19978065 |
DOI: | 10.3390/fermentation10010033 |
Popis: | Genetic engineering and directed evolution are effective methods for addressing the low yield and poor industrialization level of microbial target products. The current research focus is on how to efficiently and rapidly screen beneficial mutants from constructed large-scale mutation libraries. Traditional screening methods such as plate screening and well-plate screening are severely limited in their development and application due to their low efficiency and high costs. In the past decade, microfluidic technology has become an important high-throughput screening technology due to its fast speed, low cost, high automation, and high screening throughput, and it has developed rapidly. Droplet-based microfluidic high-throughput screening has been widely used in various fields, such as strain/enzyme activity screening, pathogen detection, single-cell analysis, drug discovery, and chemical synthesis, and has been widely applied in industries such as those involving materials, food, chemicals, textiles, and biomedicine. In particular, in the field of enzyme research, droplet-based microfluidic high-throughput screening has shown excellent performance in discovering enzymes with new functions as well as improved catalytic efficiency or stability, acid-base tolerance, etc. Currently, droplet-based microfluidic high-throughput screening technology has achieved the high-throughput screening of enzymes such as glycosidase, lipase, peroxidase, protease, amylase, oxidase, and transaminase as well as the high-throughput detection of products such as riboflavin, coumarin, 3-dehydroquinate, lactic acid, and ethanol. This article reviews the application of droplet-based microfluidics in high-throughput screening, with a focus on high-throughput screening strategies based on UV, visible, and fluorescence spectroscopy, including labeled optical signal detection screening, as well as label-free electrochemical detection, mass spectrometry, Raman spectroscopy, nuclear magnetic resonance, etc. Furthermore, the research progress and development trends of droplet-based microfluidic technology in enzyme modification and strain screening are also introduced. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |