Optimal Design of an Interior Permanent Magnet Synchronous Motor for Electric Vehicle Applications Using a Machine Learning-Based Surrogate Model

Autor: Song Guo, Xiangdong Su, Hang Zhao
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Energies, Vol 17, Iss 16, p 3864 (2024)
Druh dokumentu: article
ISSN: 1996-1073
DOI: 10.3390/en17163864
Popis: This paper presents an innovative design for an interior permanent magnet synchronous motor (IPMSM), targeting enhanced performance for electric vehicle (EV) applications. The proposed motor features a double V-shaped rotor structure with irregular ferrite magnets embedded in the slots between the permanent magnets. This design significantly enhances torque performance. Furthermore, a machine learning-based surrogate model is developed by integrating fine and coarse mesh data. Optimized using the Non-dominated Sorting Genetic Algorithm II (NSGA-II), this surrogate model effectively reduces computational time compared to traditional finite element analysis (FEA).
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje