Autor: |
Song Guo, Xiangdong Su, Hang Zhao |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Energies, Vol 17, Iss 16, p 3864 (2024) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en17163864 |
Popis: |
This paper presents an innovative design for an interior permanent magnet synchronous motor (IPMSM), targeting enhanced performance for electric vehicle (EV) applications. The proposed motor features a double V-shaped rotor structure with irregular ferrite magnets embedded in the slots between the permanent magnets. This design significantly enhances torque performance. Furthermore, a machine learning-based surrogate model is developed by integrating fine and coarse mesh data. Optimized using the Non-dominated Sorting Genetic Algorithm II (NSGA-II), this surrogate model effectively reduces computational time compared to traditional finite element analysis (FEA). |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|