Design of a 0.5 V Chopper-Stabilized Differential Difference Amplifier for Analog Signal Processing Applications

Autor: Xinlan Fan, Feifan Gao, Pak Kwong Chan
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Sensors, Vol 23, Iss 24, p 9808 (2023)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s23249808
Popis: This paper presents a low-voltage low-power chopper-stabilized differential difference amplifier (DDA) realized using 40 nm CMOS technology. Operating with a supply voltage of 0.5 V, a three-stage DDA has been employed to achieve an open-loop gain of 89 dB, while consuming just 0.74 μW of power. The proposed DDA incorporates feed-forward frequency compensation and a Type II compensator to achieve pole-zero cancellation and damping factor control. The DDA has a unity-gain bandwidth (UGB) of 170 kHz, a phase margin (PM) of 63.98°, and a common-mode rejection ratio (CMRR) of up to 100 dB. This circuit can effectively drive a 50 pF capacitor in parallel with a 300 kΩ resistor. The use of the chopper stabilization technique effectively mitigates the offset and 1/f noise. The chopping frequency of the chopper modulator is 5 kHz. The input noise is 245 nV/sqrt (Hz) at 1 kHz, and the input-referred offset under Monte Carlo cases is only 0.26 mV. Such a low-voltage chopper-stabilized DDA will be very useful for analog signal processing applications. Compared to the reported chopper DDA counterparts, the proposed DDA is regarded as that with one of the lowest supply voltages. The proposed DDA has demonstrated its effectiveness in tradeoff design when dealing with multiple parameters pertaining to power consumption, noise, and bandwidth.
Databáze: Directory of Open Access Journals