Autor: |
M. Sherif El-Eskandarany, Maryam Saeed, Eissa Al-Nasrallah, Fahad Al-Ajmi, Mohammad Banyan |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Energies, Vol 12, Iss 6, p 1005 (2019) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en12061005 |
Popis: |
Due to its affordable price, abundance, high storage capacity, low recycling coast, and easy processing, Mg metal is considered as a promising hydrogen storage material. However, the poor de/rehydrogenation kinetics and strong stability of MgH2 must be improved before proposing this material for applications. Doping MgH2 powders with one or more catalytic agents is one common approach leading to obvious improving on the behavior of MgH2. The present study was undertaken to investigate the effect of doping MgH2 with 7 wt% of amorphous(a)-LaNi3 nanopowders on hydrogenation/dehydrogenation behavior of the metal hydride powders. The results have shown that rod milling MgH2 with a-LaNi3 abrasive nanopowders led to disintegrate microscale-MgH2 powders to nanolevel. The final nanocomposite product obtained after 50 h–100 h of rod milling revealed superior hydrogenation kinetics, indexed by short time (8 min) required to absorb 6 wt% of H2 at 200 °C/10 bar. At 225 °C/200 mbar, nanocomposite powders revealed outstanding dehydrogenation kinetics, characterized by very short time (2 min) needed to release 6 wt% of H2. This new tailored solid-hydrogen storage system experienced long cycle-life-time (2000 h) at 225 °C without obeying to sever degradation on its kinetics and/or storage capacity. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|