Existence of radially symmetric patterns for a diffusion problem with variable diffusivity

Autor: Maicon Sônego
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Electronic Journal of Qualitative Theory of Differential Equations, Vol 2017, Iss 64, Pp 1-10 (2017)
Druh dokumentu: article
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2017.1.64
Popis: We give a sufficient condition for the existence of radially symmetric stable stationary solution of the problem $u_t=\operatorname{div}(a^2\nabla u)+f(u)$ on the unit ball whose border is supplied with zero Neumann boundary condition. Such a condition involves the diffusivity function $a$ and the technique used here is inspired by the work of E. Yanagida.
Databáze: Directory of Open Access Journals