Entropy dimension of shifts of finite type on free groups

Autor: Jung-Chao Ban, Chih-Hung Chang
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: AIMS Mathematics, Vol 5, Iss 5, Pp 5121-5139 (2020)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2020329/fulltext.html
Popis: This paper considers the topological degree of G-shifts of finite type for the case where G is a finitely generated free group. Topological degree is the logarithm of entropy dimension; that is, topological degree is a characterization for zero entropy systems. Following the conjugacy-invariance of topological degree, we show that it is equivalent to solving a system of nonlinear recurrence equations. More explicitly, the topological degree of G-shift of finite type is achieved as the maximal spectral radius of a collection of matrices corresponding to the shift itself.
Databáze: Directory of Open Access Journals