Autor: |
Jung-Chao Ban, Chih-Hung Chang |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 5, Iss 5, Pp 5121-5139 (2020) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.2020329/fulltext.html |
Popis: |
This paper considers the topological degree of G-shifts of finite type for the case where G is a finitely generated free group. Topological degree is the logarithm of entropy dimension; that is, topological degree is a characterization for zero entropy systems. Following the conjugacy-invariance of topological degree, we show that it is equivalent to solving a system of nonlinear recurrence equations. More explicitly, the topological degree of G-shift of finite type is achieved as the maximal spectral radius of a collection of matrices corresponding to the shift itself. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|