Autor: |
Lucian Trifina, Daniela Tarniceriu |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 7, Iss 11, p 1018 (2019) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math7111018 |
Popis: |
In this paper, we have obtained the prime factorization form of positive integers N for which the number of true different fourth- and fifth-degree permutation polynomials (PPs) modulo N is equal to zero. We have also obtained the prime factorization form of N so that the number of any degree PPs nonreducible at lower degree PPs, fulfilling Zhao and Fan (ZF) sufficient conditions, is equal to zero. Some conclusions are drawn comparing all fourth- and fifth-degree permutation polynomials with those fulfilling ZF sufficient conditions. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|