Autor: |
Bernd Michael Wolf, Jee-Cheng Wu, Xiaowei Yu, Svein Solberg, Juho Pitkänen, Sorin Popescu, Manuela Hirschmugl, Felix Morsdorf, Erik Næsset, Christian Heipke, Markus Holopainen, Mikko Vastaranta, Hannu Hyyppä, Antero Kukko, Harri Kaartinen, Juha Hyyppä |
Jazyk: |
angličtina |
Rok vydání: |
2012 |
Předmět: |
|
Zdroj: |
Remote Sensing, Vol 4, Iss 4, Pp 950-974 (2012) |
Druh dokumentu: |
article |
ISSN: |
2072-4292 |
DOI: |
10.3390/rs4040950 |
Popis: |
The objective of the “Tree Extraction” project organized by EuroSDR (European Spatial data Research) and ISPRS (International Society of Photogrammetry and Remote Sensing) was to evaluate the quality, accuracy, and feasibility of automatic tree extraction methods, mainly based on laser scanner data. In the final report of the project, Kaartinen and Hyyppä (2008) reported a high variation in the quality of the published methods under boreal forest conditions and with varying laser point densities. This paper summarizes the findings beyond the final report after analyzing the results obtained in different tree height classes. Omission/Commission statistics as well as neighborhood relations are taken into account. Additionally, four automatic tree detection and extraction techniques were added to the test. Several methods in this experiment were superior to manual processing in the dominant, co-dominant and suppressed tree storeys. In general, as expected, the taller the tree, the better the location accuracy. The accuracy of tree height, after removing gross errors, was better than 0.5 m in all tree height classes with the best methods investigated in this experiment. For forest inventory, minimum curvature-based tree detection accompanied by point cloud-based cluster detection for suppressed trees is a solution that deserves attention in the future. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|