Eye-Resolvable Surface-Plasmon-Enhanced Fluorescence Temperature Sensor

Autor: Luping Tang, Yangyang Zhang, Chen Liao, Longbing He, Xing Wu, Yiwei Liu, Litao Sun
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Nanomaterials, Vol 12, Iss 22, p 4019 (2022)
Druh dokumentu: article
ISSN: 2079-4991
DOI: 10.3390/nano12224019
Popis: Temperature sensors are widely used in important fields such as daily home, medical care, and aerospace as a commonly used device for measuring temperature. Traditional temperature sensors such as thermocouples, thermal resistances, and infrared sensors are technically mature; however, they have limitations in the application environment, temperature measurement range, and temperature measurement accuracy. An eye-resolvable surface plasmon-enhanced fluorescence temperature sensor based on dual-emission Ag@SiO2@CdS/ZnS composite nanoparticle film with multiple-parameter detectable signals and high response sensitivity was proposed in this work. The temperature sensor’s x-chromaticity coordinate varied from 0.299 to 0.358 in the range of 77–297 K, while the y-chromaticity coordinate varied from 0.288 to 0.440, displaying eye-resolvable surface plasmon-enhanced fluorescence. The ratiometric response of two isolated photoluminescence (PL) peak-integrated areas located around 446 and 592 nm was found to be significantly temperature dependent, with a thermal sensitivity of 1.4% K−1, which can be used as an additional parameter to measure the precise temperature. Furthermore, the surface state emission peak intensity was linearly related to temperature, with a correlation index Adj. R-Square of 99.8%. Multiple independent temperature estimates can help with self-calibration and improve the measurement accuracy. Our findings show that the designed sensors can detect low temperatures while maintaining stability and reproducibility.
Databáze: Directory of Open Access Journals