Autor: |
Swarup S. Swaminathan, MD, Samuel I. Berchuck, PhD, J. Sunil Rao, PhD, Felipe A. Medeiros, MD, PhD |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Ophthalmology Science, Vol 4, Iss 3, Pp 100454- (2024) |
Druh dokumentu: |
article |
ISSN: |
2666-9145 |
DOI: |
10.1016/j.xops.2023.100454 |
Popis: |
Purpose: To compare how linear mixed models (LMMs) using Gaussian, Student t, and log-gamma (LG) random effect distributions estimate rates of structural loss in a glaucomatous population using OCT and to compare model performance to ordinary least squares (OLS) regression. Design: Retrospective cohort study. Subjects: Patients in the Bascom Palmer Glaucoma Repository (BPGR). Methods: Eyes with ≥ 5 reliable peripapillary retinal nerve fiber layer (RNFL) OCT tests over ≥ 2 years were identified from the BPGR. Retinal nerve fiber layer thickness values from each reliable test (signal strength ≥ 7/10) and associated time points were collected. Data were modeled using OLS regression as well as LMMs using different random effect distributions. Predictive modeling involved constructing LMMs with (n – 1) tests to predict the RNFL thickness of subsequent tests. A total of 1200 simulated eyes of different baseline RNFL thickness values and progression rates were developed to evaluate the likelihood of declared progression and predicted rates. Main Outcome Measures: Model fit assessed by Watanabe–Akaike information criterion (WAIC) and mean absolute error (MAE) when predicting future RNFL thickness values; log-rank test and median time to progression with simulated eyes. Results: A total of 35 862 OCT scans from 5766 eyes of 3491 subjects were included. The mean follow-up period was 7.0 ± 2.3 years, with an average of 6.2 ± 1.4 tests per eye. The Student t model produced the lowest WAIC. In predictive models, all LMMs demonstrated a significant reduction in MAE when estimating future RNFL thickness values compared with OLS (P < 0.001). Gaussian and Student t models were similar and significantly better than the LG model in estimating future RNFL thickness values (P < 0.001). Simulated eyes confirmed LMM performance in declaring progression sooner than OLS regression among moderate and fast progressors (P |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|