Inactivation of Osteoblast PKC Signaling Reduces Cortical Bone Mass and Density and Aggravates Renal Osteodystrophy in Mice with Chronic Kidney Disease on High Phosphate Diet

Autor: Ariane Zaloszyc, Philippe Choquet, Amira Sayeh, Maria Bartosova, Betti Schaefer, Ulrike Huegel, Gaëlle Aubertin-Kirch, Christopher Healy, François Severac, Sébastien Rizzo, Georges Boivin, Franz Schaefer, Michel Fischbach, Justine Bacchetta, Seiamak Bahram, Claus Peter Schmitt
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: International Journal of Molecular Sciences, Vol 23, Iss 12, p 6404 (2022)
Druh dokumentu: article
ISSN: 1422-0067
1661-6596
DOI: 10.3390/ijms23126404
Popis: Chronic kidney disease (CKD) frequently leads to hyperphosphatemia and hyperparathyroidism, mineral bone disorder (CKD-MBD), ectopic calcifications and cardiovascular mortality. PTH activates the osteoanabolic Gαs/PKA and the Gαq/11/PKC pathways in osteoblasts, the specific impact of the latter in CKD-MBD is unknown. We generated osteoblast specific Gαq/11 knockout (KO) mice and established CKD-MBD by subtotal nephrectomy and dietary phosphate load. Bone morphology was assessed by micro-CT, osteoblast function by bone planar scintigraphy at week 10 and 22 and by histomorphometry. Osteoblasts isolated from Gαq/11 KO mice increased cAMP but not IP3 in response to PTH 1-34, demonstrating the specific KO of the PKC signaling pathway. Osteoblast specific Gαq/11 KO mice exhibited increased serum calcium and reduced bone cortical thickness and mineral density at 24 weeks. CKD Gαq/11 KO mice had similar bone morphology compared to WT, while CKD Gαq/11-KO on high phosphate diet developed decreased metaphyseal and diaphyseal cortical thickness and area, as well as a reduction in trabecular number. Gαq/11-KO increased bone scintigraphic tracer uptake at week 10 and mitigated tracer uptake in CKD mice at week 22. Histological bone parameters indicated similar trends. Gαq/11-KO in osteoblast modulates calcium homeostasis, bone formation rate, bone morphometry, and bone mineral density. In CKD and high dietary phosphate intake, osteoblast Gαq/11/PKC KO further aggravates mineral bone disease.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje