Relatively equi-statistical convergence via deferred Nörlund mean based on difference operator of fractional-order and related approximation theorems

Autor: B. B. Jena, S. K. Paikray, S. A. Mohiuddine, Vishnu Narayan Mishra
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: AIMS Mathematics, Vol 5, Iss 1, Pp 650-672 (2020)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2020044/fulltext.html
Popis: In the proposed paper, we have introduced the notion of point-wise relatively statistical convergence, relatively equi-statistical convergence and relatively uniform statistical convergence of sequences of functions based on the difference operator of fractional order including (p, q)-gamma function via the deferred Nörlund mean. As an application point of view, we have proved a Korovkin type approximation theorem by using the relatively deferred Nörlund equi-statistical convergence of difference sequences of functions and intimated that our theorem is a generalization of some well-established approximation theorems of Korovkin type which was presented in earlier works. Moreover, we estimate the rate of the relatively deferred Nörlund equi-statistical convergence involving a non-zero scale function. Furthermore, we use the modulus of continuity to estimate the rate of convergence of approximating positive linear operators. Finally, we set up various fascinating examples in connection with our results and definitions presented in this paper.
Databáze: Directory of Open Access Journals