Water Use Efficiency in Rice Under Alternative Wetting and Drying Technique Using Energy Balance Model with UAV Information and AquaCrop in Lambayeque, Peru

Autor: Lia Ramos-Fernández, Roxana Peña-Amaro, José Huanuqueño-Murillo, David Quispe-Tito, Mayra Maldonado-Huarhuachi, Elizabeth Heros-Aguilar, Lisveth Flores del Pino, Edwin Pino-Vargas, Javier Quille-Mamani, Alfonso Torres-Rua
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Remote Sensing, Vol 16, Iss 20, p 3882 (2024)
Druh dokumentu: article
ISSN: 2072-4292
DOI: 10.3390/rs16203882
Popis: In the context of global warming, rising air temperatures are increasing evapotranspiration (ETc) in all agricultural crops, including rice, a staple food worldwide. Simultaneously, the occurrence of droughts is reducing water availability, affecting traditional irrigation methods for rice cultivation (flood irrigation). The objective of this study was to determine ETc (water use) and yield performance in rice crop under different irrigation regimes: treatments with continuous flood irrigation (CF) and irrigations with alternating wetting and drying (AWD5, AWD10, and AWD20) in an experimental area in INIA–Vista Florida. Water balance, rice physiological data, and yield were measured in the field, and local weather data and thermal and multispectral images were collected with a meteorological station and a UAV (a total of 13 flights). ETc values obtained by applying the METRICTM (Mapping Evapotranspiration at High Resolution using Internalized Calibration) energy balance model ranged from 2.4 to 8.9 mm d−1 for the AWD and CF irrigation regimes. In addition, ETc was estimated by a water balance using the AquaCrop model, previously parameterized with RGB image data and field weather data, soil, irrigation water, and crops, obtaining values between 4.3 and 7.1 mm d−1 for the AWD and CF irrigation regimes. The results indicated that AWD irrigation allows for water savings of 27 to 28%, although it entails a yield reduction of from 2 to 15%, which translates into an increase in water use efficiency (WUE) of from 18 to 36%, allowing for optimizing water use and improving irrigation management.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje