Autor: |
Sumanto Chanda, Anindya Ghose-Choudhury, Partha Guha |
Jazyk: |
angličtina |
Rok vydání: |
2018 |
Předmět: |
|
Zdroj: |
Electronic Journal of Differential Equations, Vol 2018, Iss 120,, Pp 1-9 (2018) |
Druh dokumentu: |
article |
ISSN: |
1072-6691 |
Popis: |
We present a construction of the Jacobi-Maupertuis (JM) principle for an equation of the Lienard type, $$ \ddot{x} + f(x) \dot{x}^2 + g(x) = 0, $$ using Jacobi's last multiplier. The JM metric allows us to reformulate the Newtonian equation of motion for a variable mass as a geodesic equation for a Riemannian metric. We illustrate the procedure with examples of Painleve-Gambier XXI, the Jacobi equation and the Henon-Heiles system. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|