Autor: |
Laura Teodori, Sarah K. Ochoa, Marjan Omer, Veronica L. Andersen, Pernille Bech, Junyi Su, Jessica Bridoux, Jesper S. Nielsen, Mathias B. Bertelsen, Sophie Hernot, Kurt V. Gothelf, Jørgen Kjems |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Molecular Therapy: Nucleic Acids, Vol 35, Iss 3, Pp 102305- (2024) |
Druh dokumentu: |
article |
ISSN: |
2162-2531 |
DOI: |
10.1016/j.omtn.2024.102305 |
Popis: |
In cancer molecular imaging, selecting binders with high specificity and affinity for biomarkers is paramount for achieving high-contrast imaging within clinical time frames. Nanobodies have emerged as potent candidates, surpassing antibodies in pre-clinical imaging due to their convenient production, rapid renal clearance, and deeper tissue penetration. Multimerization of nanobodies is a popular strategy to enhance their affinity and pharmacokinetics; however, traditional methods are laborious and may yield heterogeneous products. In this study, we employ a Holliday junction (HJ)-like nucleic acid-based scaffold to create homogeneous nanostructures with precise multivalent and multiparatopic nanobody displays. The plug-and-play assembly allowed the screening of several nanobody multimer configurations for the detection of the breast cancer biomarker, human epidermal growth factor receptor 2 (HER2). In vitro studies demonstrated significant improvements in binding avidity, particularly with the biparatopic construct exhibiting high sensitivity, surpassing that of traditional antibody-based cell binding. Furthermore, our HJ platform allowed for adaptation from fluorescence-based to nuclear imaging, as demonstrated in xenografted mice, thereby allowing for future in vivo applications. This work highlights the potential of nucleic acid-mediated multimerization to markedly enhance nanobody binding, by exploring synergistic combinations and offering versatility for both in vitro diagnostics and cancer molecular imaging with prospects for future theranostic applications. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|