Autor: |
Chi-Sing Ho, Neal Jean, Catherine A. Hogan, Lena Blackmon, Stefanie S. Jeffrey, Mark Holodniy, Niaz Banaei, Amr A. E. Saleh, Stefano Ermon, Jennifer Dionne |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 10, Iss 1, Pp 1-8 (2019) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-019-12898-9 |
Popis: |
The use of Raman spectroscopy for pathogen identification is hampered by the weak Raman signal and phenotypic diversity of bacterial cells. Here the authors generate an extensive dataset of bacterial Raman spectra and apply deep learning to identify common bacterial pathogens and predict antibiotic treatment from noisy Raman spectra. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|