A matrix Harnack inequality for semilinear heat equations

Autor: Giacomo Ascione, Daniele Castorina, Giovanni Catino, Carlo Mantegazza
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Mathematics in Engineering, Vol 5, Iss 1, Pp 1-15 (2023)
Druh dokumentu: article
ISSN: 2640-3501
DOI: 10.3934/mine.2023003?viewType=HTML
Popis: We derive a matrix version of Li & Yau–type estimates for positive solutions of semilinear heat equations on Riemannian manifolds with nonnegative sectional curvatures and parallel Ricci tensor, similarly to what R. Hamilton did in [5] for the standard heat equation. We then apply these estimates to obtain some Harnack–type inequalities, which give local bounds on the solutions in terms of the geometric quantities involved.
Databáze: Directory of Open Access Journals