Autor: |
Giacomo Ascione, Daniele Castorina, Giovanni Catino, Carlo Mantegazza |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Mathematics in Engineering, Vol 5, Iss 1, Pp 1-15 (2023) |
Druh dokumentu: |
article |
ISSN: |
2640-3501 |
DOI: |
10.3934/mine.2023003?viewType=HTML |
Popis: |
We derive a matrix version of Li & Yau–type estimates for positive solutions of semilinear heat equations on Riemannian manifolds with nonnegative sectional curvatures and parallel Ricci tensor, similarly to what R. Hamilton did in [5] for the standard heat equation. We then apply these estimates to obtain some Harnack–type inequalities, which give local bounds on the solutions in terms of the geometric quantities involved. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|