Popis: |
Our goal is to model, with forecasting aims, the daily electricity demand in a southeast colombian region through a non-parametric regression model implementation. We consider some “calendar variables” such as time of the day, day of the week, month, and year, among others, on the estimation process. Data come from an electricity distribution local company and are taken from Valencia (2005). Available data go from January 2001 to November 2004. These data show such a complicated behavior that it becomes hard to model using classical parametric models. Since exploratory analysis suggested the existence of an electricity demand daily typical curve, we used non-parametric models instead. For comparison purposes, we made use of some other methodologies including ARIMA models and the insertion of macroeconomic variables. Statistical processing was run using R.El propósito de este trabajo es modelar, con fines de pronóstico, la demanda diaria de energía eléctrica en una región del suroccidente colombiano, mediante la implementación de modelos de regresión no paramétrica teniendo en cuenta factores de influencia tales como hora del día, día de la semana, mes y año, entre otros. Los datos empleados en el desarrollo de este proyecto provienen de una compañía local de distribución de energía eléctrica y se tomaron de Valencia (2005). La información disponible va desde enero de 2001 hasta noviembre de 2004. Estos datos muestran un comportamiento complejo, difícil de modelar con la teoría básica de los métodos paramétricos. Dado que un análisis exploratorio de la información sugiere la existencia de una curva típica diaria de demanda, se eligió estimarla utilizando modelos de regresión no paramétrica. Para efectos comparativos, se propuso la aplicación de otras metodologías que involucran modelos ARIMA y variables macroeconómicas. Todo el procesamiento estadístico se ejecutó con R. |