Autor: |
Christopher W Pearce, Philippe G Young |
Jazyk: |
angličtina |
Rok vydání: |
2014 |
Předmět: |
|
Zdroj: |
PLoS ONE, Vol 9, Iss 12, p e114292 (2014) |
Druh dokumentu: |
article |
ISSN: |
1932-6203 |
DOI: |
10.1371/journal.pone.0114292 |
Popis: |
When the head is subject to non-penetrating (blunt) impact, contusion-type injuries are commonly identified beneath the impact site (the coup) and, in some instances, at the opposite pole (the contre-coup). This pattern of injury has long eluded satisfactory explanation and blunt head injury mechanisms in general remain poorly understood. There are only a small number of studies in the open literature investigating the head's response to short duration impacts, which can occur in collisions with light projectiles. As such, the head impact literature to date has focussed almost exclusively on impact scenarios which lead to a quasi-static pressure response in the brain. In order to investigate the response of the head to a wide range of impact durations, parametric numerical studies were performed on a highly bio-fidelic finite element model of the human head created from in vivo magnetic resonance imaging (MRI) scan data with non-linear tissue material properties. We demonstrate that short duration head impacts can lead to potentially deleterious transients of positive and negative intra-cranial pressure over an order of magnitude larger than those observed in the quasi-static regime despite reduced impact force and energy. The onset of this phenomenon is shown to be effectively predicted by the ratio of impact duration to the period of oscillation of the first ovalling mode of the system. These findings point to dramatically different pressure distributions in the brain and hence different patterns of injury depending on projectile mass, and provide a potential explanation for dual coup/contre-coup injuries observed clinically. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|