Autor: |
Ting Zhang, Joshua Yuk Lin Lai, Mingzhe Shi, Qing Li, Chen Zhang, He Yan |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Advanced Science, Vol 11, Iss 17, Pp n/a-n/a (2024) |
Druh dokumentu: |
article |
ISSN: |
2198-3844 |
DOI: |
10.1002/advs.202308652 |
Popis: |
Abstract Non‐fullerene acceptors (NFAs) have recently emerged as pivotal materials for enhancing the efficiency of organic solar cells (OSCs). To further advance OSC efficiency, precise control over the energy levels of NFAs is imperative, necessitating the development of a robust computational method for accurate energy level predictions. Unfortunately, conventional computational techniques often yield relatively large errors, typically ranging from 0.2 to 0.5 electronvolts (eV), when predicting energy levels. In this study, the authors present a novel method that not only expedites energy level predictions but also significantly improves accuracy , reducing the error margin to 0.06 eV. The method comprises two essential components. The first component involves data cleansing, which systematically eliminates problematic experimental data and thereby minimizes input data errors. The second component introduces a molecular description method based on the electronic properties of the sub‐units comprising NFAs. The approach simplifies the intricacies of molecular computation and demonstrates markedly enhanced prediction performance compared to the conventional density functional theory (DFT) method. Our methodology will expedite research in the field of NFAs, serving as a catalyst for the development of similar computational approaches to address challenges in other areas of material science and molecular research. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|