Stability properties of Radon measure-valued solutions for a class of nonlinear parabolic equations under Neumann boundary conditions

Autor: Quincy Stévène Nkombo, Fengquan Li, Christian Tathy
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: AIMS Mathematics, Vol 6, Iss 11, Pp 12182-12224 (2021)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2021707?viewType=HTML
Popis: In this paper, we address the existence, uniqueness, decay estimates, and the large-time behavior of the Radon measure-valued solutions for a class of nonlinear strongly degenerate parabolic equations involving a source term under Neumann boundary conditions with bounded Radon measure as initial data. $ \begin{equation*} \begin{cases} u_{t} = \Delta\psi(u)+h(t)f(x, t) \ \ &\text{in} \ \ \Omega\times(0, T), \\ \frac{\partial\psi(u)}{\partial\eta} = g(u) \ \ &\text{on} \ \ \partial\Omega\times(0, T), \\ u(x, 0) = u_{0}(x) \ \ &\text{in} \ \ \Omega, \end{cases} \end{equation*} $ where $ T > 0 $, $ \Omega\subset \mathbb{R}^{N}(N\geq2) $ is an open bounded domain with smooth boundary $ \partial\Omega $, $ \eta $ is an outward normal vector on $ \partial\Omega $. The initial value data $ u_{0} $ is a nonnegative bounded Radon measure on $ \Omega $, the function $ f $ is a solution of the linear inhomogeneous heat equation under Neumann boundary conditions with measure data, and the functions $ \psi $, $ g $ and $ h $ satisfy the suitable assumptions.
Databáze: Directory of Open Access Journals