Autor: |
Chun-Min Yu, Kuo-Ping Lin, Gia-Shie Liu, Chia-Hao Chang |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Symmetry, Vol 12, Iss 4, p 562 (2020) |
Druh dokumentu: |
article |
ISSN: |
2073-8994 |
DOI: |
10.3390/sym12040562 |
Popis: |
The aim of this study was to develop a novel intuitionistic Type-2 fuzzy inference system (IT-2 FIS) which adopts a parameterized Yager-generating function and particle swarm optimization (PSO). In IT-2 FIS, the intuitionistic Type-2 is set as a fuzzy symmetrical triangular number in which the hesitation degree adopts the Yager-generating function, and the parameters of the proposed IT-2 FIS adopting the PSO are tuned. The intuitionistic and Type-2 fuzzy sets have been proven to be the most effective for handling more uncertainty. Therefore, this study proposes an intuitionistic Type-2 set with a Yager-generating function to enhance the conventional fuzzy inference system. Moreover, PSO can improve the fuzzy inference system by searching for the optimal parameters of IT-2 FIS. In this study, linguistic variables were represented by triangular fuzzy numbers (TFS). Two numerical examples were examined: capacity-planning and medical diagnosis problems. An approaching capacity-loadings example was used to verify that the proposed IT-2 FIS could effectively estimate the results of the capacity loadings. In the medical diagnosis problem, IT-2 FIS could obtain a higher correct rate by revealing experts’ knowledge. In both examples, the proposed IT-2 FIS provided more objective estimated values than traditional fuzzy inference systems (FIS) and Type-2 FIS. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|