A 3D multiscale view convolutional neural network with attention for mental disease diagnosis on MRI images

Autor: Zijian Wang, Yaqin Zhu, Haibo Shi, Yanting Zhang, Cairong Yan
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Mathematical Biosciences and Engineering, Vol 18, Iss 5, Pp 6978-6994 (2021)
Druh dokumentu: article
ISSN: 1551-0018
DOI: 10.3934/mbe.2021347?viewType=HTML
Popis: Computer Assisted Diagnosis (CAD) based on brain Magnetic Resonance Imaging (MRI) is a popular research field for the computer science and medical engineering. Traditional machine learning and deep learning methods were employed in the classification of brain MRI images in the previous studies. However, the current algorithms rarely take into consideration the influence of multi-scale brain connectivity disorders on some mental diseases. To improve this defect, a deep learning structure was proposed based on MRI images, which was designed to consider the brain's connections at different sizes and the attention of connections. In this work, a Multiscale View (MV) module was proposed, which was designed to detect multi-scale brain network disorders. On the basis of the MV module, the path attention module was also proposed to simulate the attention selection of the parallel paths in the MV module. Based on the two modules, we proposed a 3D Multiscale View Convolutional Neural Network with Attention (3D MVA-CNN) for classification of MRI images for mental disease. The proposed method outperformed the previous 3D CNN structures in the structural MRI data of ADHD-200 and the functional MRI data of schizophrenia. Finally, we also proposed a preliminary framework for clinical application using 3D CNN, and discussed its limitations on data accessing and reliability. This work promoted the assisted diagnosis of mental diseases based on deep learning and provided a novel 3D CNN method based on MRI data.
Databáze: Directory of Open Access Journals