Dimma: Semi-Supervised Low-Light Image Enhancement with Adaptive Dimming

Autor: Wojciech Kozłowski, Michał Szachniewicz, Michał Stypułkowski, Maciej Zięba
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Entropy, Vol 26, Iss 9, p 726 (2024)
Druh dokumentu: article
ISSN: 1099-4300
DOI: 10.3390/e26090726
Popis: Enhancing low-light images with natural colors poses a challenge due to camera processing variations and limited access to ground-truth lighting conditions. To address this, we propose Dimma, a semi-supervised approach that aligns with any camera using a small set of image pairs captured under extreme lighting conditions. Our method employs a convolutional mixture density network to replicate camera-specific noise present in dark images. We enhance results further by introducing a conditional UNet architecture based on user-provided lightness values. Trained on just a few real image pairs, Dimma achieves competitive results compared to fully supervised state-of-the-art methods trained on large datasets.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje