Crack Detection of Bridge Concrete Components Based on Large-Scene Images Using an Unmanned Aerial Vehicle

Autor: Zhen Xu, Yingwang Wang, Xintian Hao, Jingjing Fan
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Sensors, Vol 23, Iss 14, p 6271 (2023)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s23146271
Popis: The current method of crack detection in bridges using unmanned aerial vehicles (UAVs) relies heavily on acquiring local images of bridge concrete components, making image acquisition inefficient. To address this, we propose a crack detection method that utilizes large-scene images acquired by a UAV. First, our approach involves designing a UAV-based scheme for acquiring large-scene images of bridges, followed by processing these images using a background denoising algorithm. Subsequently, we use a maximum crack width calculation algorithm that is based on the region of interest and the maximum inscribed circle. Finally, we applied the method to a typical reinforced concrete bridge. The results show that the large-scene images are only 1/9–1/22 of the local images for this bridge, which significantly improves detection efficiency. Moreover, the accuracy of the crack detection can reach up to 93.4%.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje