Ultrafine particulate matter pollution and dysfunction of endoplasmic reticulum Ca2+ store: A pathomechanism shared with amyotrophic lateral sclerosis motor neurons?

Autor: Silvia Sapienza, Valentina Tedeschi, Barbara Apicella, Anna Pannaccione, Carmela Russo, Maria Josè Sisalli, Giorgia Magliocca, Stefania Loffredo, Agnese Secondo
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Ecotoxicology and Environmental Safety, Vol 273, Iss , Pp 116104- (2024)
Druh dokumentu: article
ISSN: 0147-6513
DOI: 10.1016/j.ecoenv.2024.116104
Popis: Increased risk of neurodegenerative diseases has been envisaged for air pollution exposure. On the other hand, environmental risk factors, including air pollution, have been suggested for Amyotrophic Lateral Sclerosis (ALS) pathomechanism. Therefore, the neurotoxicity of ultrafine particulate matter (PM0.1) (PM < 0.1 μm size) and its sub-20 nm nanoparticle fraction (NP20) has been investigated in motor neuronal-like cells and primary cortical neurons, mainly affected in ALS. The present data showed that PM0.1 and NP20 exposure induced endoplasmic reticulum (ER) stress, as occurred in cortex and spinal cord of ALS mice carrying G93A mutation in SOD1 gene. Furthermore, NSC-34 motor neuronal-like cells exposed to PM0.1 and NP20 shared the same proteomic profile on some apoptotic factors with motor neurons treated with the L-BMAA, a neurotoxin inducing Amyotrophic Lateral Sclerosis/Parkinson–Dementia Complex (ALS/PDC). Of note ER stress induced by PM0.1 and NP20 in motor neurons was associated to pathological changes in ER morphology and dramatic reduction of organellar Ca2+ level through the dysregulation of the Ca2+-pumps SERCA2 and SERCA3, the Ca2+-sensor STIM1, and the Ca2+-release channels RyR3 and IP3R3. Furthermore, the mechanism deputed to ER Ca2+ refilling (e.g. the so called store operated calcium entry-SOCE) and the relative currents ICRAC were also altered by PM0.1 and NP20 exposure. Additionally, these carbonaceous particles caused the exacerbation of L-BMAA-induced ER stress and Caspase-9 activation. In conclusion, this study shows that PM0.1 and NP20 induced the aberrant expression of ER proteins leading to dysmorphic ER, organellar Ca2+ dysfunction, ER stress and neurotoxicity, providing putative correlations with the neurodegenerative process occurring in ALS.
Databáze: Directory of Open Access Journals