Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy

Autor: Jens B. Stephansen, Alexander N. Olesen, Mads Olsen, Aditya Ambati, Eileen B. Leary, Hyatt E. Moore, Oscar Carrillo, Ling Lin, Fang Han, Han Yan, Yun L. Sun, Yves Dauvilliers, Sabine Scholz, Lucie Barateau, Birgit Hogl, Ambra Stefani, Seung Chul Hong, Tae Won Kim, Fabio Pizza, Giuseppe Plazzi, Stefano Vandi, Elena Antelmi, Dimitri Perrin, Samuel T. Kuna, Paula K. Schweitzer, Clete Kushida, Paul E. Peppard, Helge B. D. Sorensen, Poul Jennum, Emmanuel Mignot
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Nature Communications, Vol 9, Iss 1, Pp 1-15 (2018)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-018-07229-3
Popis: The diagnosis of sleep disorders such as narcolepsy and insomnia currently requires experts to interpret sleep recordings (polysomnography). Here, the authors introduce a neural network analysis method for polysomnography that could reduce time spent in sleep clinics and automate narcolepsy diagnosis.
Databáze: Directory of Open Access Journals