Predicting locations of cryptic pockets from single protein structures using the PocketMiner graph neural network

Autor: Artur Meller, Michael Ward, Jonathan Borowsky, Meghana Kshirsagar, Jeffrey M. Lotthammer, Felipe Oviedo, Juan Lavista Ferres, Gregory R. Bowman
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Nature Communications, Vol 14, Iss 1, Pp 1-15 (2023)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-023-36699-3
Popis: Cryptic pockets enable targeting of proteins currently considered undruggable because they lack pockets in their ground state structures. Here, the authors develop a graph neural network that accurately predicts cryptic pockets in static structures by training using molecular simulation data alone.
Databáze: Directory of Open Access Journals