Autor: |
Artur Meller, Michael Ward, Jonathan Borowsky, Meghana Kshirsagar, Jeffrey M. Lotthammer, Felipe Oviedo, Juan Lavista Ferres, Gregory R. Bowman |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 14, Iss 1, Pp 1-15 (2023) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-023-36699-3 |
Popis: |
Cryptic pockets enable targeting of proteins currently considered undruggable because they lack pockets in their ground state structures. Here, the authors develop a graph neural network that accurately predicts cryptic pockets in static structures by training using molecular simulation data alone. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|