Enhancing sEMG-Based Finger Motion Prediction with CNN-LSTM Regressors for Controlling a Hand Exoskeleton

Autor: Mirco Vangi, Chiara Brogi, Alberto Topini, Nicola Secciani, Alessandro Ridolfi
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Machines, Vol 11, Iss 7, p 747 (2023)
Druh dokumentu: article
ISSN: 2075-1702
DOI: 10.3390/machines11070747
Popis: In recent years, the number of people with disabilities has increased hugely, especially in low- and middle-income countries. At the same time, robotics has made significant advances in the medical field, and many research groups have begun to develop low-cost wearable solutions. The Mechatronics and Dynamic Modelling Lab of the Department of Industrial Engineering at the University of Florence has recently developed a new version of a wearable hand exoskeleton for assistive purposes. In this paper, we will present a new regression method to predict the finger angle position of the first joint from the value of the sEMG of the forearm and the previous position of the finger itself. To acquire the dataset necessary to train the regressor a specific graphical user interface was developed which was able to acquire sEMG data from a Myo armband and the finger position from a Leap Motion Controller. Two long short-term memory (LSTM) models were compared, one in its standard configuration and the other with a convolutional layer, yielding significantly better performance for the second one, with an increase in R2 coefficient from an average value of 0.746 to 0.825, leading to the conclusion that a convolutional layer could increase performance when few sensors are available.
Databáze: Directory of Open Access Journals