Autor: |
Soobae Kim, Injoo Jeong |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Energies, Vol 12, Iss 17, p 3335 (2019) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en12173335 |
Popis: |
High-altitude electromagnetic pulses (HEMPs) are bursts of electromagnetic energy that result from nuclear weapon detonations at altitudes at or above 30 km. A HEMP is comprised of three components: E1, E2, and E3. E1 and E2 are instantaneous emissions that can damage electronic components, whereas E3 generates low-frequency, geomagnetically-induced currents in transmission lines and power transformers. These currents can lead to the half-cycle saturation of power transformers and increased reactive power consumption. This study assessed the impact of the E3 HEMP on Korean electric power systems. For this assessment, two publicly available E3 HEMP environments were identified. A Direct Current (DC)equivalent model of Korean power systems was developed to calculate the geomagnetically-induced currents and increased the reactive power absorption of transformers in power systems. The vulnerability assessment involved two types of analysis: Static power flow analysis and dynamic transient stability analysis. The maximum electric field limit was determined by performing a steady-state analysis. The capability of the Korean electric power systems to maintain synchronism and acceptable voltages in the transient stability time frame following an E3 HEMP event was evaluated. Furthermore, the effects of detonations at five target locations were compared. It was concluded that Korean electric power systems cannot maintain their stability when affected by an E3 HEMP. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|