Influence of Tool Wear and Workpiece Diameter on Surface Quality and Prediction of Surface Roughness in Turning

Autor: Chunxiao Li, Guoyong Zhao, Dong Ji, Guangteng Zhang, Limin Liu, Fandi Zeng, Zhihuan Zhao
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Metals, Vol 14, Iss 11, p 1205 (2024)
Druh dokumentu: article
ISSN: 2075-4701
DOI: 10.3390/met14111205
Popis: In turning, tool wear and cutting vibration are inevitable, which have great influence on surface quality. Analyzing the influence mechanism of tool wear and cutting vibration on surface quality is important to achieve the accurate prediction of surface roughness before machining and improve machining quality. In this paper, a turning vibration experiment is conducted to reveal that the diameter of shafts is an important factor affecting the vibration amplitude and frequency. In addition, based on machining parameters, tool wear and workpiece diameter, this empirical model, the response surface method and a support vector machine are used to model and predict surface roughness. The fitting accuracy, prediction accuracy and generalization performance of the proposed methods are compared in detail. The results show that the response surface modeling method has the highest fitting accuracy, but the exponential empirical modeling method has the highest prediction accuracy and best generalization performance. Additionally, the prediction results indicate that the surface roughness increases with the increase in tool wear and decreases with the increase in workpiece diameter.
Databáze: Directory of Open Access Journals