Data-Driven Virtual Sensing for Electrochemical Sensors

Autor: Lucia Sangiorgi, Veronica Sberveglieri, Claudio Carnevale, Sabrina De Nardi, Estefanía Nunez-Carmona, Sara Raccagni
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Sensors, Vol 24, Iss 5, p 1396 (2024)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s24051396
Popis: In recent years, the application of machine learning for virtual sensing has revolutionized the monitoring and management of information. In particular, electrochemical sensors generate large amounts of data, allowing the application of complex machine learning/AI models able to (1) reproduce the measured data and (2) predict and manage faults in the measuring sensor. In this work, data-driven models based on an autoregressive model and an artificial neural network have been identified and used to (i) evaluate sensor redundancy and (ii) predict and manage faults in the context of electrochemical sensors for the measurement of ethanol. The approach shows encouraging results in terms of both performance and sensitivity analyses, allowing for the reconstruction of the values measured by two sensors in a series of six sensors with different dopant levels and to reproduce their values after a fault.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje