Autor: |
Yanping Chen, Yu Yao, Wantong Zhao, Lifeng Wang, Haitao Li, Jiangwei Zhang, Baojun Wang, Yi Jia, Riguang Zhang, Yan Yu, Jian Liu |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 14, Iss 1, Pp 1-11 (2023) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-023-42941-9 |
Popis: |
Abstract Complex metal nanoparticles distributed uniformly on supports demonstrate distinctive physicochemical properties and thus attract a wide attention for applications. The commonly used wet chemistry methods display limitations to achieve the nanoparticle structure design and uniform dispersion simultaneously. Solid-phase synthesis serves as an interesting strategy which can achieve the fabrication of complex metal nanoparticles on supports. Herein, the solid-phase synthesis strategy is developed to precisely synthesize uniformly distributed CoFe@FeOx core@shell nanoparticles. Fe atoms are preferentially exsolved from CoFe alloy bulk to the surface and then be carburized into a FexC shell under thermal syngas atmosphere, subsequently the formed FexC shell is passivated by air, obtaining CoFe@FeOx with a CoFe alloy core and a FeOx shell. This strategy is universal for the synthesis of MFe@FeOx (M = Co, Ni, Mn). The CoFe@FeOx exhibits bifunctional effect on regulating polysulfides as the separator coating layer for Li-S and Na-S batteries. This method could be developed into solid-phase synthetic systems to construct well distributed complex metal nanoparticles. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|