USING A DYNAMIC ARTIFICIAL NEURAL NETWORK FOR FORECASTING THE VOLATILITY OF A FINANCIAL TIME SERIES

Autor: Juan D. Velásquez, Sarah Gutiérrez, Carlos J. Franco
Jazyk: English<br />Spanish; Castilian<br />Portuguese
Rok vydání: 2013
Předmět:
Zdroj: Revista Ingenierías Universidad de Medellín, Vol 12, Iss 22, Pp 127-136 (2013)
Druh dokumentu: article
ISSN: 1692-3324
Popis: The ability to obtain accurate volatility forecasts is an important issue for the financial analyst. In this paper, we use the DAN2 model, a multilayer perceptron and an ARCH model to predict the monthly conditional variance of stock prices. The results show that DAN2 model is more accurate for predicting in-sample and out-of-sample variance that the other considered models for the used dataset. Thus, the value of this neural network as a predictive tool is demonstrated.
Databáze: Directory of Open Access Journals