Machine learning for data-driven design of high-safety lithium metal anode

Autor: Qi Zhang, Junlin Dong, Chuan Zhou, Dantong Zhang, Shuguang Yuan, Denis Kramer, Dongfeng Xue, Chao Peng
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: STAR Protocols, Vol 5, Iss 1, Pp 102834- (2024)
Druh dokumentu: article
ISSN: 2666-1667
DOI: 10.1016/j.xpro.2023.102834
Popis: Summary: Here, we present a protocol for developing an inorganic-organic hybrid interphase layer using the self-assembled monolayers technique to enhance the surface of the lithium metal anode. We describe steps for extracting organic molecules from open-sourced databases and calculating their microscopic properties. We then detail procedures for developing a machine learning model for predicting the ionic diffusion barrier and preparing the inputs for prediction. This protocol enables a cost-effective workflow to identify promising self-assembled monolayers with exceptional performance.For complete details on the use and execution of this protocol, please refer to Zhang et al. (2023).1 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Databáze: Directory of Open Access Journals