The Triad Na+ Activated Na+ Channel (Nax)—Salt Inducible KINASE (SIK) and (Na+ + K+)-ATPase: Targeting the Villains to Treat Salt Resistant and Sensitive Hypertension
Autor: | Sabrina R. Gonsalez, Dayene S. Gomes, Alessandro M. de Souza, Fernanda M. Ferrão, Zoe Vallotton, Venkateswara R. Gogulamudi, Jennifer Lowe, Dulce E. Casarini, Minolfa C. Prieto, Lucienne S. Lara |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | International Journal of Molecular Sciences, Vol 24, Iss 9, p 7887 (2023) |
Druh dokumentu: | article |
ISSN: | 1422-0067 1661-6596 |
DOI: | 10.3390/ijms24097887 |
Popis: | The Na+-activated Na+ channel (Nax) and salt-inducible kinase (SIK) are stimulated by increases in local Na+ concentration, affecting (Na+ + K+)-ATPase activity. To test the hypothesis that the triad Nax/SIK/(Na+ + K+)-ATPase contributes to kidney injury and salt-sensitive hypertension (HTN), uninephrectomized male Wistar rats (200 g; n = 20) were randomly divided into 4 groups based on a salt diet (normal salt diet; NSD—0.5% NaCl—or high-salt diet; HSD—4% NaCl) and subcutaneous administration of saline (0.9% NaCl) or deoxycorticosterone acetate (DOCA, 8 mg/kg), as follows: Control (CTRL), CTRL-Salt, DOCA, and DOCA-Salt, respectively. After 28 days, the following were measured: kidney function, blood pressure, (Na+ + K+)-ATPase and SIK1 kidney activities, and Nax and SIK1 renal expression levels. SIK isoforms in kidneys of CTRL rats were present in the glomerulus and tubular epithelia; they were not altered by HSD and/or HTN. CTRL-Salt rats remained normotensive but presented slight kidney function decay. HSD rats displayed augmentation of the Nax/SIK/(Na+ + K+)-ATPase pathway. HTN, kidney injury, and kidney function decay were present in all DOCA rats; these were aggravated by HSD. DOCA rats presented unaltered (Na+ + K+)-ATPase activity, diminished total SIK activity, and augmented SIK1 and Nax content in the kidney cortex. DOCA-Salt rats expressed SIK1 activity and downregulation in (Na+ + K+)-ATPase activity in the kidney cortex despite augmented Nax content. The data of this study indicate that the (Na+ + K+)-ATPase activity response to SIK is attenuated in rats under HSD, independent of HTN, as a mechanism contributing to kidney injury and salt-sensitive HTN. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |