Autor: |
Xu Zhao, Ke Liao, Wei Wang, Junmei Xu, Lingzhong Meng |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Perioperative Medicine, Vol 10, Iss 1, Pp 1-12 (2021) |
Druh dokumentu: |
article |
ISSN: |
2047-0525 |
DOI: |
10.1186/s13741-021-00178-4 |
Popis: |
Abstract Background Intraoperative physiological monitoring generates a large quantity of time-series data that might be associated with postoperative outcomes. Using a deep learning model based on intraoperative time-series monitoring data to predict postoperative quality of recovery has not been previously reported. Methods Perioperative data from female patients having laparoscopic hysterectomy were prospectively collected. Deep learning, logistic regression, support vector machine, and random forest models were trained using different datasets and evaluated by 5-fold cross-validation. The quality of recovery on postoperative day 1 was assessed using the Quality of Recovery-15 scale. The quality of recovery was dichotomized into satisfactory if the score ≥122 and unsatisfactory if |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|