Properties of the (n, m)−fold hyperspace suspension of continua

Autor: Gerardo Hernández-Valdez, David Herrera Carrasco, Fernando Macías-Romero, Maria de Jesús López
Jazyk: Spanish; Castilian
Rok vydání: 2022
Předmět:
Zdroj: Revista Integración, Vol 40, Iss 2 (2022)
Druh dokumentu: article
ISSN: 0120-419X
2145-8472
Popis: Let n, m ∈ N with m ≤ n and X be a metric continuum. We consider the hyperspaces Cn(X) (respectively, Fn(X)) of all nonempty closed subsets of X with at most n components (respectively, n points). The (n, m)−fold hyperspace suspension on X was introduced in 2018 by Anaya, Maya, and Vázquez-Juárez, to be the quotient space Cn(X)/Fm(X) which is obtained from Cn(X) by identifying Fm(X) into a one-point set. In this paper we prove that Cn(X)/Fm(X) contains an n−cell; Cn(X)/Fm(X) has property (b); Cn(X)/Fm(X) is unicoherent; Cn(X)/Fm(X) is colocally connected; Cn(X)/Fm(X) is aposyndetic; and Cn(X)/Fm(X) is finitely aposyndetic
Databáze: Directory of Open Access Journals