Solutions of a Quadratic Inverse Eigenvalue Problem for Damped Gyroscopic Second-Order Systems
Autor: | Hong-Xiu Zhong, Guo-Liang Chen, Xiang-Yun Zhang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Journal of Applied Mathematics, Vol 2014 (2014) |
Druh dokumentu: | article |
ISSN: | 1110-757X 1687-0042 |
DOI: | 10.1155/2014/703178 |
Popis: | Given k pairs of complex numbers and vectors (closed under conjugation), we consider the inverse quadratic eigenvalue problem of constructing n×n real matrices M, D, G, and K, where M>0, K and D are symmetric, and G is skew-symmetric, so that the quadratic pencil Q(λ)=λ2M+λ(D+G)+K has the given k pairs as eigenpairs. First, we construct a general solution to this problem with k≤n. Then, with the special properties D=0 and K |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |