Autor: |
Yang Xu, Jing Lin, Yi Chen, Haosong Zhong, Connie Kong Wai Lee, Min Tan, Siyu Chen, Minseong Kim, Elizabeth Wing Yan Poon, Timothy Yee Him Chan, Aidan Qiaoyaxiao Yuan, Miao Tang, Rongliang Yang, Yexin Pan, Ying Fu, Mitch Guijun Li |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Advanced Materials Interfaces, Vol 11, Iss 16, Pp n/a-n/a (2024) |
Druh dokumentu: |
article |
ISSN: |
2196-7350 |
DOI: |
10.1002/admi.202400045 |
Popis: |
Abstract Since ancient times, humans have learned to use fire and other heating methods to fight against dangerous pathogens, like cooking raw food, sterilizing surgical tools, and disinfecting other pathogen transmission media. However, it remains difficult for current heating methods to achieve extremely fast and highly efficient sterilization simultaneously. Herein, an ultrafast and uniform heating‐based strategy with outstanding bactericidal performance is proposed. Ultra‐precise laser manufacturing is used to fabricate the Joule heater which can be rapidly heated to 90 °C in 5 s with less than 1 °C fluctuation in a large area by real‐time temperature feedback control. An over 98% bactericidal efficiency on S. aureus for 30 s and on E. coli for merely 5 s is shown. The heating strategy shows a 360 times faster acceleration compared to the commonly used steam sterilization from the suggested guidelines by the Centers for Disease Control and Prevention (CDC), indicating that high temperatures with short duration can effectively disinfect microorganisms. As a proof of concept, this heating strategy can be widely applied to sterilizing cash and various objects to help protect the public from bacteria in daily life. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|