Autor: |
Joel D. Allen, Dylan P. Ivory, Sophie Ge Song, Wan-ting He, Tazio Capozzola, Peter Yong, Dennis R. Burton, Raiees Andrabi, Max Crispin |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Cell Reports, Vol 42, Iss 4, Pp 112307- (2023) |
Druh dokumentu: |
article |
ISSN: |
2211-1247 |
DOI: |
10.1016/j.celrep.2023.112307 |
Popis: |
Summary: Animal reservoirs of sarbecoviruses represent a significant risk of emergent pandemics, as evidenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Vaccines remain successful at limiting severe disease and death, but the potential for further coronavirus zoonosis motivates the search for pan-coronavirus vaccines. This necessitates a better understanding of the glycan shields of coronaviruses, which can occlude potential antibody epitopes on spike glycoproteins. Here, we compare the structure of 12 sarbecovirus glycan shields. Of the 22 N-linked glycan attachment sites present on SARS-CoV-2, 15 are shared by all 12 sarbecoviruses. However, there are significant differences in the processing state at glycan sites in the N-terminal domain, such as N165. Conversely, glycosylation sites in the S2 domain are highly conserved and contain a low abundance of oligomannose-type glycans, suggesting a low glycan shield density. The S2 domain may therefore provide a more attractive target for immunogen design efforts aiming to generate a pan-coronavirus antibody response. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|