Autor: |
Max Ismailov, Michail Tsikerdekis, Sherali Zeadally |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Future Internet, Vol 12, Iss 9, p 148 (2020) |
Druh dokumentu: |
article |
ISSN: |
1999-5903 |
DOI: |
10.3390/fi12090148 |
Popis: |
Identity deception in online social networks is a pervasive problem. Ongoing research is developing methods for identity deception detection. However, the real-world efficacy of these methods is currently unknown because they have been evaluated largely through laboratory experiments. We present a review of representative state-of-the-art results on identity deception detection. Based on this analysis, we identify common methodological weaknesses for these approaches, and we propose recommendations that can increase their effectiveness for when they are applied in real-world environments. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|