Autor: |
Sharief Deshmukh, Patrik Peska, Nasser Bin Turki |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 8, Iss 1, p 137 (2020) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math8010137 |
Popis: |
A unit geodesic vector field on a Riemannian manifold is a vector field whose integral curves are geodesics, or in other worlds have zero acceleration. A geodesic vector field on a Riemannian manifold is a smooth vector field with acceleration of each of its integral curves is proportional to velocity. In this paper, we show that the presence of a geodesic vector field on a Riemannian manifold influences its geometry. We find characterizations of n-spheres as well as Euclidean spaces using geodesic vector fields. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|