Boosting-GNN: Boosting Algorithm for Graph Networks on Imbalanced Node Classification

Autor: Shuhao Shi, Kai Qiao, Shuai Yang, Linyuan Wang, Jian Chen, Bin Yan
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Frontiers in Neurorobotics, Vol 15 (2021)
Druh dokumentu: article
ISSN: 1662-5218
DOI: 10.3389/fnbot.2021.775688
Popis: The graph neural network (GNN) has been widely used for graph data representation. However, the existing researches only consider the ideal balanced dataset, and the imbalanced dataset is rarely considered. Traditional methods such as resampling, reweighting, and synthetic samples that deal with imbalanced datasets are no longer applicable in GNN. This study proposes an ensemble model called Boosting-GNN, which uses GNNs as the base classifiers during boosting. In Boosting-GNN, higher weights are set for the training samples that are not correctly classified by the previous classifiers, thus achieving higher classification accuracy and better reliability. Besides, transfer learning is used to reduce computational cost and increase fitting ability. Experimental results indicate that the proposed Boosting-GNN model achieves better performance than graph convolutional network (GCN), GraphSAGE, graph attention network (GAT), simplifying graph convolutional networks (SGC), multi-scale graph convolution networks (N-GCN), and most advanced reweighting and resampling methods on synthetic imbalanced datasets, with an average performance improvement of 4.5%.
Databáze: Directory of Open Access Journals