HiPR: High-throughput probabilistic RNA structure inference

Autor: Pavel P. Kuksa, Fan Li, Sampath Kannan, Brian D. Gregory, Yuk Yee Leung, Li-San Wang
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Computational and Structural Biotechnology Journal, Vol 18, Iss , Pp 1539-1547 (2020)
Druh dokumentu: article
ISSN: 2001-0370
DOI: 10.1016/j.csbj.2020.06.004
Popis: Recent high-throughput structure-sensitive genome-wide sequencing-based assays have enabled large-scale studies of RNA structure, and robust transcriptome-wide computational prediction of individual RNA structures across RNA classes from these assays has potential to further improve the prediction accuracy. Here, we describe HiPR, a novel method for RNA structure prediction at single-nucleotide resolution that combines high-throughput structure probing data (DMS-seq, DMS-MaPseq) with a novel probabilistic folding algorithm. On validation data spanning a variety of RNA classes, HiPR often increases accuracy for predicting RNA structures, giving researchers new tools to study RNA structure.
Databáze: Directory of Open Access Journals