Durrmeyer-Type Generalization of Parametric Bernstein Operators

Autor: Arun Kajla, Mohammad Mursaleen, Tuncer Acar
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Symmetry, Vol 12, Iss 7, p 1141 (2020)
Druh dokumentu: article
ISSN: 2073-8994
DOI: 10.3390/sym12071141
Popis: In this paper, we present a Durrmeyer type generalization of parametric Bernstein operators. Firstly, we study the approximation behaviour of these operators including a local and global approximation results and the rate of approximation for the Lipschitz type space. The Voronovskaja type asymptotic formula and the rate of convergence of functions with derivatives of bounded variation are established. Finally, the theoretical results are demonstrated by using MAPLE software.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje