Proposing an Affordable Plasma Device for Polymer Surface Modification and Microbial Inactivation

Autor: William Chiappim, Felipe Vicente de Paula Kodaira, Gisele Fátima Soares de Castro, Diego Morais da Silva, Thayna Fernandes Tavares, Ana Carla de Paula Leite Almeida, Bruno Henrique Silva Leal, Antje Quade, Cristiane Yumi Koga-Ito, Konstantin Georgiev Kostov
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Molecules, Vol 29, Iss 17, p 4270 (2024)
Druh dokumentu: article
ISSN: 1420-3049
DOI: 10.3390/molecules29174270
Popis: This study proposes an affordable plasma device that utilizes a parallel-plate dielectric barrier discharge geometry with a metallic mesh electrode, featuring a straightforward 3D-printed design. Powered by a high-voltage supply adapted from a cosmetic plasma device, it operates on atmospheric air, eliminating the need for gas flux. Surface modification of polyethylene treated with this device was characterized and showed that the elemental composition after 15 min of plasma treatment decreased the amount of C to ~80 at% due to the insertion of O (~15 at%). Tested against Candida albicans and Staphylococcus aureus, the device achieved a reduction of over 99% in microbial load with exposure times ranging from 1 to 10 min. Simultaneously, the Vero cell viability remained consistently high, namely between 91% and 96% across exposure times. These results highlight this device’s potential for the surface modification of materials and various infection-related applications, boasting affordability and facilitating effective antimicrobial interventions.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje