Novel fatty acyl apoE mimetic peptides have increased potency to reduce plasma cholesterol in mice and macaques[S]

Autor: G.M. Anantharamaiah, David W. Garber, Dennis Goldberg, Eric Morrel, Geeta Datta, Mayakonda N. Palgunachari, Thomas C. Register, Susan E. Appt, C. Roger White
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Journal of Lipid Research, Vol 59, Iss 11, Pp 2075-2083 (2018)
Druh dokumentu: article
ISSN: 0022-2275
DOI: 10.1194/jlr.M085985
Popis: Ac-hE18A-NH2 is a dual-domain apoE mimetic peptide that possesses the putative receptor binding domain from apoE (LRKLRKRLLR, denoted hE; residues 141–150) covalently attached to lipid-associating peptide 18A. Like apoE, Ac-hE18A-NH2 reduces plasma cholesterol in animal models and exhibits anti-inflammatory properties independent of its cholesterol-reducing effect. Ac-hE18A-NH2 has already undergone phase I clinical trials as a lipid-lowering agent. To explore the therapeutic potential more, we designed and synthesized new analogues by linking ɑ-aminohexanoic acid, octanoic acid, or myristic acid to LRRLRRRLLR-18A-NH2 ([R]hE18A-NH2) and examined the cholesterol-lowering potency in animals. The modified peptides effectively reduced plasma cholesterol in apoE-null mice fed standard chow or a Western diet; the myristyl analogue was the most effective. A single administration of the myristyl analogue reduced plasma total and LDL cholesterol in a dose-dependent manner in hypercholesterolemic cynomolgus macaques for up to 1 week despite the continuation of a cholesterol-supplemented diet. The myristyl peptide (7.4 mg/kg) reduced total and LDL cholesterol at 24 h by 64% and 74%, respectively; plasma HDL levels were modestly reduced and returned to baseline by day 7. These new analogues should exhibit enhanced potency at lower doses than Ac-hE18A-NH2, which may make them attractive therapeutic candidates for clinical trials.
Databáze: Directory of Open Access Journals